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SUMMARY 

The induced drag polar is developed for wt-ngs capable of attaining 
extremely high loadings while possessing an ell-iptical distribution of 
circulation. This development is accomplished through a theoretical 
investigation of the vortex-wake deformation process and the deduction 
of the airfoil forces from'the impulse and kinetic energy contents of 
the ultimate wake form. The investigation shows that the induced 
velocities of the wake limit the maximum lift coefflcient to a value 
of 1.94 times the wing aspect ratio, for aspect ratios equal to or 
less than 6.5, and that the section properties of the airfoil limit the 
lift coefficient to 12.6 for aspect ratios greeter than 6.5. Relations 
are developed for the rate of deformation of the vortex wake. It is 
a l s o  shown that linear wing theory is app1icabl.e up to lift coeffi- 
cients equal to 1.1 times the aspect ratio. 

INTRODUCTION 

The development in recent years of advanced methods of boundary- 
layer control has made possible the attainment of very high lift coeffi- 
cients with two-dimensional airfoil sections. 
control on three-dimensional wings has likewise resulted in large 
increases in the maximum sectional circulations by preventing f l o w  
separation at high angles of attack. For a wing of finite span, how- 
ever, this increased circulation is necessarily accompanied by an 
increasingly powerful trailing vortex system. The velocities induced 
in the vicinity of the wing by this system can become quite large, 
with a pronounced effect on the wing aerodynamic force, especially on 
the lift component. 
diminishing increases in wing lift. 

Use of boundary-layer 

Successive increases in circulation produce 

'The basic information presented herein was a €'art of a thesis 
entitled "The Limit of Circulation Lift on Airfoils of Finite Aspect 
Ratio" which was offered in partial fulfillment of the requirements 
for the degree of Master of Aeronautical Engineering, University of 
Virginia, Charlottesville, Virginia, May 1960. However, some addi- 
tional material on the effects of wake deformation on longitudinal 
stability has been added. 
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From a design and performance standpoint it thus becomes of con- 
siderable importance to determine these wake effects in a quantitative 
manner. 
linear wing theory; this is justified since normal wing stall limits 
the maximum lift coefficient to relatively low values. For wings 
intended to operate at very high lift coefficients, however, the ques- 
tion arises as to the limit of the valid use of linear theory, since 
the linearizing assumptions are no longer justified for large deforma- 
tions and displacements of the wake. 

It is customary practice in conventional wing design to employ 

The present investigation has as its object, therefore, the quanti- * 
tative estimation of the effects of the vortex wake deformation on the 
wing aerodynamic forces, with view to establishing the limiting lift 
coefficient for linear-theory application, and a l s o  the nature and magni- 
tude of the deviation from the linear prediction at the higher lift 
coefficients. This development is accomplished by considering in some 
detail the rolling-up process of the wake and by deducing the aero- 
dynamic forces from the impulse and kinetic energy of the final wake 
form. The results are presented in the form of the wing-induced drag 
polar, for all aspect ratios. A s  a corollary, for use in stability 
analyses, the rate of rollup of the vortex sheet is investigated and 
an expression is developed for the distance required for complete 
rollup, for a given lift coefficient and aspect ratio. 

The basic analysis is carried out for the specific case of a con- 
.sentional wing which maintains an elliptical distribution of circula- 
tion at all lift coefficients. The various wing-propulsion systems - 
slwh as the jet-flap wing - are excluded. The elliptical distribution 
is chosen because it yields results which are generally applicable to 
the more common planforms where the larger part of the vorticity is 
shed near the wing tips. The methods of the analysis are? however, 
general and may be applied to other distributions, although the calcu- . 
lations may be more involved. 

Throughout the analysis the air is treated as an inviscid, incom- 
pressible fluid. Inasmuch as the attainment of high lift coefficients 
by actual wings requires the removal or reenergization of the boundary- 
layer air, the production of a large viscous wake by the airfoil is 
precluded and viscous effects are negligible. In the sequel, therefore, 
the wake referred to is the vortex wake associated with the wing circu- 
lation gradient and not a viscous wake. 
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SYMBOLS 

b2 aspect  r a t io ,  - s, A 

A' 

a 

cross-section& area of t he  ovoid wake 

c i r c l e  radius  (Joukowski transformatlon); e l l i p s e  major 
semiaxis 

L o  
1 
1 
5 
6 

b 

c D i  

wing span; e l l i p s e  minor semiaxis 

D i  
induced drag coef f ic ien t ,  9 

P v '  - %  2 

wing chord C 

D i  induced drag force 

vortex sheet  ro l lup  dis tance (along X-axis) 

vector element of  surface area 

d 

vector element of a r c  length 

E t o t a l  wake k ine t i c  energy 

E' 

F 
4 

Fi 

k ine t i c  energy per  u n i t  length of sulxore 

wing aerodynamic force vector 

component of F due t o  momentum changes 
+ 

FR r e su l t an t  force on bound vortex system 

I' 

i' 
impulse per unit length  of wake 

t o t a l  wake impulse vector 
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J 

L lift force 

2 generalized length 

M’ 

n 

P denotes specific point in space 

c l  

s, 

R1,R2,r 

vortex moment of inertia about system center of gravity 

hydrodynamic mass per unit length of wake 

number of turns per unit length of vortex helix 

local velocity vector of induced field 

velocity of center of gravity of generalized vortex system 

radial distances from vortex core centers 

4 

rO radius of fully developed vortex core 

R2 and - R1 
q,r2 normalized radial distances from vortex centers, - b b ’  

re spec t i vely 

s general surface area 

wing area SW 

t time 

U general stream velocity 

U x-component of induced velocity 

V, v’ free-stream velocity, (vector) 

$R resultant velocity at wing section 

V y-component of induced velocity 

circumferential velocity vT 

W complex potentid, $4 + iq 
W z-component of induced velocity 

. 

. 
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- w 
-+ 
X 

- 
Y 

Z' 

- 
Z 

L 
1 
1 

I 

U 

ua 

r 

rO 

K. 

P 

- PV2 
2 

c 
7 

cp 

velocity of center of gravity of vortex sheet 

unit vector along positive X-axis 

lateral coordinate of center of gravity of vortex system 

complex variable in Y-Z plane, 

vertical coordinate of center of gravity of vortex system 

unit vector along negative Z-axis 

geometrical angle of attack 

absolute angle of attack 

y + iz 

circulation, $' 2.d; 
circulation around median section of wing 

inclination angle of final wake 

dummy variable of integration 

generalized wake inclination angle 

vortex strength, - 
2Jr 
PO 

fluid mass density 

dynamic pressure 

the wake vortex sheet 

time required for complete rollup of vortex sheet 

velocity potential 

eccentric angle, cos- 12y 
b 

stream function 

surface vorticity of vortex sheet 
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Subscripts: 

C property of vortex core 

i index number 

S 

X? Y7 = 

property associated with wing surface 

components along X-, Y-, and Z-axis, respectively 

c property associated with vortex sheet 

Superscript: 

reference point at which velocity is computed P 

THE WAKE-DEFORMATION PROCESS 

Wake-Induction Effects 

InLJced-velocity effects .- Consider a wing in stead: 
operating with an elliptical distribution of circulation 

flight 

(1) 

Fmanating from the trailing edge is a vortex sheet whose intensity 
immediately behind the trailing edge is 

This sheet may be considered a superposition of an infinite number of 
vortex filaments each of strength dl? - dy 

dY 
as shown in figure 1. 

At any point P 

+ P  

in the flow field the total velocity (relative to 
4 

the fixed airfoil) is the sum of the free-stream velocity 
induced velocity qs associated with the bound vorticity, and the 

induced velocity ?&' due to the wake vorticity. 

V, the 

Vectorially, 
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b 

L '  
1 
1 
5 
6 

This velocity field also applies to the vortex sheet and since the 
field is not, in general, uniform, the vortex sheet undergoes deforma- 
tion as it passes downstream. Since the vorticity distribution of the 
wake determines the effective velocity field in the vicinity of the 
airfoil, by equation ( 3 ) ,  this wake deformation is reflected as a change 
in the aerodynamic force vector acting on the wing. As is evident from 
equations (2) and ( S ) ,  a large-span wing with small (small angle 
of attack) w i l l  produce a relatively weak wake and the rate of deforma- 
tion will be small; thus, the wake w i l l  maintain its sheet form for a 
considerable distance downstream. 

ro 

High circulation effects.- If now the elliptical circulation loading 
form as given by equation (17 is maintained while is increased, the 
wake w i l l  increase in intensity according to the Helmholtz law of vortex 
continuity. The large induced velocities associated with the high inten- 
sity cause a rapid deformation of the vortex sheet which, in addition 
to being displaced downward, begins to roll up from the edges. The down- 
ward progression of the wake causes it to be inclined to the free-stream- 
velocity direction by an angle 8 = e ( x ) .  
vorticity of the initial sheet to become increasingly concentrated into 
two vortex cores, and the resulting alteration of the induced field 
decreases the downward progression of the wake so that 8, in general, 
decreases in the downstream direction (de/& negative). A generalized 
sketch of this variation of the wake angle is shown in figure 2. Here 
the angle 8 is the inclination of the forming vortex cores. Far 
downstream, where the wake has reached a stable state of deformation 
(has become fully rolled up) the inclination angle is denoted by 
6 = e(m).  

To 

The r o l l u p  process causes the 

The wake deformation has two primary effects on the flow at the 
wing. First, the result of the inclination of the wake is that the 
velocity q induced at the airfoil is rotated forward as it increases 

in magnitude (fig. 3 ) .  Second, the concentration of the vorticity into 
cores causes a variation of the magnitude of the downwash across the 
span. Since the wake intensity increases with To so does the rate at 
which the sheet rolls up, and also, the angle of inclination of the wake 
increases. Thus, the downwash variation across the span becomes a func- 
tion of Po, for a wing of given span. For a wing with given Po, as 
the span is decreased the intensity of the wake increases and addition- 
ally the wake becomes more narrow, so that the defornation w i l l  proceed 

+ P  
c 
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more rapidly for a low-aspect-ratio wing than for one with high aspect 
ratio. Thus, the form of the downwash distribution i s  also a function 
of aspect ratio. 

The inclination of the wake introduces at the wing an induced- 
-) 

velocity component opposing the free-ztream velocity 
resultant effective velocity vector VR existing at a section of the 
wing decreases in magnitude and is rotated downward as the section cir- 
culation is increased. Both of these effects lessen the increment in 

V; thus, the 

4 

lift which accompanies the circulation increase. - L  
1 

In order to obtain an increase in circulation it is necessary to 1 

+ 6 
increase the absolute angle of attack aa of the section with respect 3 
to VR. However, as the geometrical angle of attack of a section is 
increased the velocity $* 
direction so as to reduce the absolute angle of attack; therefore, the 
variation of r' with geometrical angle of attack becomes nonlinear in 
the high circulation range so that the slope U/da decreases. Also, 
since the resultant velocity varies across the span, 
to the wake deformation, and the form of this velocity variation varies 
with 
attack becomes quite complex. 

decreases in magnitude and rotates in a 

+ vfi = VR(Y), due 

Po, the nature of the variation of sectional lift with angle of 

In the foregoing discussion the circulation distribution r( y) 
has been specified as being elliptical. 
distribution physically, it would be necessary to carefully tailor the 
wing geometry so as to accommodate the resultant-velocity variation 
V,(y). Since V,(y) also varies with r0, it is clear that the wing 
geometry must be variable if the elliptical circulation distribution 
is to be maintained. Conversely, if the wing geometry is fixed, the 
form of r(y) must change with Po. Of course, from this simple 
analysis no quantitative statements can be made about the nature or 
rapidity of the resultant-velocity variation. 

In order to maintain such a 

-+ + 

For the elliptical circulation loading, the value of ?R is mi- 
form across the span of an elliptical wing for small values of ro. 
However, for large values of ro or small aspect ratios the rapid 
rollup of the vortex sheet will tend to change the 

on a wing the lift distribution, which is dependent on 
fore be quite different in form. 

?R distribution. 
may exist Hence even though an elliptical distribution of circulation + k. 

VR, may there- 

- 
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The results of this simple qualitative analysis indicate that the 
wake effects w i l l  set a limit on the maximum lift coefficient of a 
finite-span wing. In order to obtain a quantitative estimate of these 
effects it is necessary to consider the details of the wake deformation. 

Development of the Final Wake Form . 
Consider now a straight wing of any aspect ratio operating with 

the elliptical circulation loading of equation (1). It is prescribed 
that the loading shall remain elliptical at all values of lift coeffi- 
cient. This condition may be physically realized by suitably varying 
the sectional camber of the wing for each value of CL or by properly 
twisting the wing. The intensity of the trailing vortex sheet at the 
trailing edge is given by equation (2). 
unstable form of vorticity and, for reasons to be discussed later, pro- 
ceeds to roll in from the edges and to travel downward in the center so 
that relatively soon after its formation it a.ppears somewhat as shown 
in figure 4. 
some distance downstream the original vortex sheet has separated in the 
middle and become coiled up into two cores of concentrated vorticity 
which are inclined by an angle 6 to the free-stream flow. These 
approximately circular cores extend on downstream to infinity where 
they join the ends of the starting vortex. 

The flat vortex sheet is an 

This rolling-up and displacement process continues until 

If now the form and properties of the final wake can be quantita- 
tively determined, the aerodynamic force on the wing can be determined 
by suitable application of the general enera and momentum theorems. 
In order to establish the final wake form the system of reference axes 
shown in figure 5 is used, where the origin is located at the midspan 
of the trailing edge and the X - a x i s  is parallel to the cores of the 
final wake, which is inclined to the free-stream velocity by the 
angle 6. The axes move with the airfoil so that the flow is steady. 
The positive directions of the induced-velocity components u, v, 
and w are as indicated. (The components of V are V cos 6 and 
V sin 6 in the x- and z-direction, respectively (fig. 6 ) . )  

Under the action of the total velocity field the vortex filaments 
comprising the initial vortex sheet assume a helical form as they wind 
about the growing cores (fig. 4). Far downstream where the rolling up 
may be considered complete, this system of helical filaments approxi- 
mates what might be called a pair of vortex solenoids. These fluid 
solenoids possess the same induction properties as their electrical 
counterparts, with proper accounting, of course, for the fluidity of 
the cores. Far downstream the flow inside the cores has the components 
V cos 6 + u, v, and w - V sin 6, while outside the cores it has the 
velocity components V cos 6, v, and w - V sin 6 in the x-, y-, and 
z- direc t i on, re spec tively . 
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Considering now a narrow strip of the flat vortex sheet taken near 
the trailing edge of the wing (as in fig. 4), if the rate of deformation 
of the sheet in the longitudinal direction is small, the wake may be 
established to a good approximation by considering the rolling up as a 
two-dimensional process and tracing the deformation of the two- 
dimensional strip as it moves downstream. At the higher deformation 
rates the assumption of a two-dimensional rollup appears less accurate 
since the shape of the wake on either side of the strip will vary some- 
what from that of the strip. However, the assumption is made that up 
to the maximum lift of the airfoil the rate of deformation is suffi- 
ciently low so that the two-dimensional deformation may be used to con- 
struct a first-order approximation of the wake form. A justification 
of this assumption lies in the fact that the primary concern is not 
with an accurate description of the entire sheet deformation but with 
only the relatively small region where the sheet is adding to the core. 
With this assumption the cross section of the wake at any distance 
downstream is that of the deformed two-dimensional strip. 

Properties of two-dimensional vortex systems.- The following two 
theorems which will be of subsequent use are derived in detail in 
reference 1: 

Theorem 1: If a system of two-dimensional vortices exists on one 
side of a flat bounding wall the center of gravity of the vortex system 
will translate parallel to the wall with the velocity 

where Pi indicates the circulation of the individual vortices and Fp, 
is the magnitude of the force exerted by the fluid on the bounding wall. 
The center of gravity of a vortex system is obtained from the relations 

L' 
1 
1 
5 
6 

I f o r  a y, z coordinate system. 
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L- 
1 
1 
5 
6 

Theorem 2:  If a vortex system produces no moment with respect to 
its center of gravity the moment of inertia of the system w i l l  remain 
constant in value for all time, 

7riri2 = Constant 
L 

Here ri is the distance of the vortex Fi from the system center 
of gravity . 

These theorems are written for a system of discrete vortices. For 
the case where the system is continuous (i.e7 a vortex sheet), the sum- 

mation is replaced by a line integration along the sheet. 

Deformation of the wake strip.- These results m y  now be applied 
to determine the deformation of the initially flat strip of wake taken 
from the vortex sheet immediately behind the trailing edge. 
dinate system as shown in figure 7 is used in which the vortex strip 
initially lies along the Y-axis with the origin located at the center 
of the strip. 
the plane 

0 5 y 5 2 

A y7z coor- 

Since the two halves of the strip are mirror images, 
y = 0 
need be considered. 

may be taken as a solid boundary and only the half 

The intensity of the strip is initially 

and the center of gravity of the strip is 

y '  
Lbl2 Y !g dY 

- 
z = o  

Lb'2 dY dy =i: 
J 

(7) 
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The strip w i l l  

velocity given 

initially tend to move downward as a flat sheet with a 
I '  

2b 
by w = 2. However, a flat vortex sheet is inherently 

unstable and begins to curl up at the edges as it travels downward. 
This instability may be physically explained in the following qualita- 
tive manner. The flow field about the flat sheet is identical to that 
about a translating plate where very low pressures occur at the edges 
due to the very high velocities. The fluid sheet is unable to resist 
these suction pressures at the edges and under the pressure gradient, 
rotational fluid from the interior flows into the tip region thereby 
increasing the circulation about the tip. (The vortex "sheet," it 
should be noted, is the idealized form for a finite thickness layer of 
rotational fluid. ) The initial vorticity distribution is thus altered 
and the velocity field produced is such that it causes the sheet to 
begin winding about the tip core. The rolling-up process during the 
very first moments of deformation have been treated in detail by Kaden 
(ref. 2). A numerical investigation of the rolling-up process using a 
row of discrete vortices to represent the vortex sheet has also been 
performed by Westwater (ref. 3) .  Both of these (two-dimensional) 

treatments indicate that the semisheet coils up into a 

spiral of the form shown in figure 8. 

A s  the strip rolls up and moves downward its center of gravity 
moves along the line 

velocity of the center of gravity is w = - r0 and after rollup is corn- 

plete the velocity is 

y = gb, as predicted by theorem 1. The initial 
- 8 

- r0 
2b 

w = 2 -. 
77b 

Considering again the initially flat strip of figure 7, the total 
circulation associated with a segment yl 5 y 5 2 using equation ( 2 ) ,  

is 
2' 

For convenience in subsequent derivations, 
of the eccentric angle (p, 

y is now written in terms 

(9 )  b 
2 

y = - cos cp 

2 
1 
1 
5 
6 
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"hen, 

ar 2 - -  
dY - -I% b cot cp 

r(yl) = Po s i n  cp 1 

The center  of grav i ty  of the segment y1 5 y 5 b i s  
2 

- 21 = 0 J 
With respect  t o  the or ig in  y = 0, the moment of i n e r t i a  of t h i s  seg- 
ment i s  

b/2 
Jo(yl)  = 3 dy = ro($)2sin ~ ( 1  - 1 3 sin2rpl) 

Yl 

Transferring t h i s  moment of i n e r t i a  t o  the  center  of gravi ty  of the 

segment yl 5 y I gives 

Now as the  ro l lup  proceeds, the  s t r i p  c o i l s  up i n  a near ly  c i r c u l a r  form, 
as shown by the  r e s u l t s  of Kaden ( r e f .  2) and Westwater ( r e f .  3); there- 

fore, the  segment 

c i r c l e  of radius rl. 
the  enclosed v o r t i c i t y  i s  given by 

y l  5 y 2 !? 2 c o i l s  i n to  a s p i r a l  contained within a 

As the  c i r cu la r  core grows, the  c i rcu la t ion  of 
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Similarly the moment of inertia of the segment after coiling is equal 
to its original value by theorem 2, 

Thus when r increases by dr, y must decrease by dy (whence cp 
increases by 
and moment of inertia become 

dcp) and the corresponding increments in core circulation 

(17) dr - dr = 
dr dQ 

dcp = ro cos cp dcp 

Differentiating equation (14) gives 

2 
cos cp (9 + $ sin 29) 2 4 sin cp 

L- 
1 
1 
5 
6 

Substitution of equations (17) and (19) into equation (18) yields 

1 2 2- 4 2  = cos2qI + 
(9 + sin 29) - sin cp ( c p  + -$ sin 29) (20) b2 4 

2 
b Since cp and y are related by the expression cos cp = - y, equa- 

tion (20) denotes the relation between y and r. A plot of - 2Y 
b 

For against 

small values of cp 
limiting process to give 

as given by equation (20) is shown in figure 9. 
b 

( c p  + 0) equation (20) can be linearized by a 

c 



or in terms of y (y +$), this becomes after a similar limiting process 
=7(5- 2 b  Y) 

A small segment of the strip near the tip is thus :oiled within a circle 
of radius equal to 2 / 3  the length of the segmsint. 
been plotted in figure 9 where it is seen that it closely approximates 
equation (20) through most of the range. 
sufficient accuracy, be used to obtain the final core properties since 
over 95 percent of the total vorticity is contained within the core 
region where the agreement is quite good. Also shown in figure 9 is a 

Equation (22) has 

Heme equation (22) may, with 

2 r  
I'O b 

plot of - against -. Figure 9 is taken .from the results of 

reference 1. 

These results lead to the picture of two final vortex cores of 

4 spaced a distance - apart with the vorticity heavily radius ro = - 
3 

concentrated near the centers, as shown in figure :LO. 

Final wake form.- The deformation of the vortex strip is now traced 
as it passes downstream by using the axis system of figure 5 with the 
assumption that the deformation follows the relations just established. 
Everywhere outside the developing cores the x--component of velocity is 
taken to be V cos 6, while the y- and z-components are v and 
w - V sin 6, respectively. When the core has grown to a radius r 
the circulation of the enclosed vorticity is 
are nearly circular in form, especially for mall values of r, the 

tangential velocity vT at the core surface 

is assumed uniform and is therefore obtainable from the circulation, 

r(r). Since the cores 

v2 + (w - v sin " 2 )  
f 
\vT = \I 

The core grows by the addition of vortex filaments from the sheet to 
its outer surface. The filaments add along the streamlines which are 
determined by the velocity components V cis E )  
centric vortex helices of intensity - dr (See 

process continues until the original sheet has 
dr ' 

By use of equation ( 2 2 )  relating the core 
the initial sheet, the circulation, intensity, 

and vT to form con- 
fig. 11.) This winding 

been consumed. 

properties to those of 
and tangential velocity 
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distributions within the fully developed cores can be determined as 
pure functions of the radius. The core circulation is 

the intensity is 

and, by using equation (23), the tangential velocity is 

L 

It is evident from equations 

become infinite at r = 0.  These 

J 
and vT dr - 

dr 
( 2 5 )  and (26) that both 

are also properties of a mathematical - -  

point vortex. Unlike the point vortex, however, the velocity distribu- 
tion given by equation (26) leads to a finite kinetic energy for the 
core flow, as w i l l  be shown later. 

Axial velocity field u(r).- The preceding development led to the 
picture of the cores as a superposition of concentric vortex helices, 
each helix being a vortex filament fromthe original sheet. A helix of 

radius r has an intensity - and induces a constant longitudinal 
velocity du across its interior. As shown in appendix A the differ- 

dr 
dr 

L -  
1 
1 
5 
6 

entia1 induced velocity due to this elemental 

dJ? 
dr 

du = n(r) - dr 

helix is 

(27) 

where n(r) 
and 

is the nmber of vortex turns per unit length of the core 

e 
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L '  
1 
1 
3 
6 

.. 
I -  

A t  the  surface of the  developing core the longi tudinal  ve loc i ty  i s  
V cos 6, s ince u = 0; therefore,  n ( r )  i s  given by 

VT( 1 
n ( r )  = 

2m-V cos 6 

However, as more vortex l i n e s  are added, the longi tudinal  veloci ty  u ( r )  
within the  core tends t o  change, thus changing n ( r )  of the  fi laments 
within the  core. After the  cores are f u l l y  developed, n ( r )  i s  giver, 
by equation (28) .  The value of u a t  a given radius i s  obtained by 
summing the ve loc i t i e s  induced by the  he l ices  ex ter tor  t o  t h a t  radius, 

where 'I denotes a dummy variable  of integrati.on. For the  region 

> r 2 0, using equations (26) and (28) gives 
3 =  

( 3 0 )  1 21 1'2 - -- ( b  - 3r)  PO n ( r )  = 

(211r)~p cos 6 + u ( r ) l  1 b;! i 
theref  ore, 

This i n t e g r a l  equation has the  equivalent d i f f e r e n t i a l  form 

The solut ion of t h i s  equation, subject t o  the  condition uig]= 0, gives 

the  axial ve loc i ty  f i e l d .  
l inear ,  it i s  readi ly  integrated af ter  separati.ng the  var iables .  Thus, 

Although the  different ia l .  equation i s  non- 
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Expansion of t h i s  equation yields  

and since 

ro2 4 - = 2- v q 1  - cos%) 
b2 4 

the axial veloci ty  f i e l d  becomes, as a function of core radius and wake 
inc l ina t ion  angle, 

o r  

1 - loge 2‘ - v cos 6 ( 3 2 )  
2 b  2 

u = iv2cos26 + 225- v2(1 - cos S’(” - 
8 3rJ 

r 7 

where 

This r e l a t i o n  (eq. (32)) predicts  an i n f i n i t e  value for u a t  
vT, the  k ine t ic  energy of  the r = 0, but  unlike the  veloci ty  f i e l d  

u ( r )  f i e l d  i s  inI’inite. 
the axial veloci ty  f i e l d ,  divide both s ides  of equation ( 3 3 )  by 
t o  obtain 

I n  order t o  obtain a more useful picture  of 
V cos 6 

which gives the r a t i o  of  the axial veloci ty  
component of the  free-stream veloci ty .  A plo t  of f l(r)  against  r /b 

i s  presented i n  f igure  12. Now f o r  small values of 6, say 6 = 5 O ,  

t m 2 6  = 0.008. For most of the core area, say r = 0. lb  ( t h i s  includes 
91 percent of the  t o t a l  core area), i s  small, reaching the value 
of 1.1 a t  r = 0.lb.  Thus f o r  s m a l l  wake angles the a x i a l  veloci ty  u 
i s  of negl igible  magnitude over most of the core area.  
center, however, the  r a t i o  a t t a i n s  very large values, becoming i n f i n i t e  

u t o  the  wake-direction 

fl(r) 

Very near the 

c 
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at the core centers, even for values of 6 approaching 0. It is 
obvious from physical considerations that the large core velocities 
cannot exist, and the reason for their prediction by equation (34) can 
be directly traced to the assumptions made in the derivation of this 
result. 

In the derivation of equation (29) (see appendix A), it was assumed 
that n was sufficiently great that each vortex turn could be considered 
to lie in a plane. This assumption is equivalent to a pitch approaching 
zero for all helices. However, an analysis of equation ( 3 0 )  with u = 0 
shows that even for appreciable values of 6 (6 5 T O 0 ) ,  n is small 
(n << 1) for the outer helices (r near b/3). Hence, the planar con- 
dition is not approached and due to the inclination of the induced- 
velocity vector with respect to the core axis the potential magnitude 
of the axial velocity over the core interior will not be realized. 
Additionally, these same effects on interior helices may produce nega- 
tive axial velocities which can counteract the positive induced veloc- 
ities of the outer helices. 

In the derivation of equation (26) the rollup of an infinitely 
thin vortex sheet was considered, so that the vorticity at the tips 

(y = &) was infinite. In reality, the vortex-sheet wake consists of 

a layer of rotational fluid which attains appreciable thickness near 
the tip (ref. 4 and fig. 1 3 ) .  
spread over a finite volume of fluid the vorticity density at the tip 
cannot be infinite, for a finite circulation in a circuit surrounding 
the tip region. Surveys show that near the center of the rolled-up 
vortex cores the  fluid possesses a large but co:nstant v o r t i c i t y  and 
the fluid there must rotate as a solid. Withinthis small subcore, 
VT + 0 as r +0, so that n again becomes increasingly smaller as 
the center is approached. Thus, no infinite axial velocities can 
actually occur. 

Since the vorticity of the layer is 

These effects associated with a more accurate representation of 
the physical flow regime as it actually exists, offer a sufficient 
explanation as to the invalidity of equation (?+) very near the core 
centers. 

It is of course possible to extend the ana:Lysis to a more refined 
consideration of the physical flow regime so as to include the effects 
of the subcore on the axial velocity field. The primary problem then 
is to establish the size of the subcores. 
plexity of such a treatment, and in view of the fact that u is very 
small, even for relatively large values of 6 
firmed by experimental evidence (ref. 4), such an analysis is not 
justified for the purposes of the present investigation. 

However, due to the corp- 

(6 5 30°), as is con- 

Therefore, 
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it is now assumed, to the degree of accuracy of the foregoing assump 
tions, that the axial velocity field is sufficiently small so that its 
effects may be neglected in the calculation of the airfoil forces. 

Rate of Deformation of the Vortex Sheet 

The preceding results concerning the deformation of the vortex 
sheet can be used to determine the degree to which the sheet has rolled 
up at any given downstream station (“downstream” referring to distance 
along the X-axis in fig. 5). 
developing core, such as shown in figure 14 where is the tangential 
velocity at the core surface (assumed uniform around the periphery), the 
rate at which the sheet adds to the core is given by 

. 

-1 Considering a cross section through a 
vT 

, 
I 

where dy is an elemental. length of the sheet. The relation between y 
and r as previously developed is (eq. (22)) 

dy = - 2 2 dr 

The time required for the core to develop to a radius r is therefore 

Substitution of VT from equation (26) yields 

The downstream distance x corresponding to this time is . 
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and the time and 
.r = ’5’ The rolling-up process is complete when 

distance f o r  complete development are obtained by setting the upper 
limit equal to b/3 in the common integral of equations (37) and ( 3 8 ) .  

Using the general result 

P2 + 2 sin-’ 2 + Constant 2 2 a 1/2 dp = - 
(a2 - P2) 

s 
and associating p with 7 (p = 7 112) , the cmmon integral of equa- 
tions (37) and (38) can be evaluated to yield the results 

f o r  any value of r. 

For complete rollup of the elliptical sheet, r = - therefore, 
3’ 

(41) b 
V 7 = 0.1211 - COS 6 

d = 0.1211b cot 6 

For small angles, 

Since for an elliptical wing 

6 = - -  4 CL 
a3 A 

equations (41) and (42) may be written in the following form: 
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This form is useful for comparison with &den's results (ref. 2). 

DETERMINATION OF THE AERODYNAMIC FORCES 

The lifting airfoil experiences a resultant aerodynamic force F' 
which is composed of the lift and induced drag components taken normal 
and parallel, respectively, to the free-stream velocity. In the present 
system of axes (fig. 3 )  the aerodynamic force 
ponents F, and Fx as shown in figure 15 where the positive force 
directions are indicated by the vectors. 
for the two force systems are, from figure 15, 

+ 
F is resolved into com- 

The transformation equations 

L = F, cos 6 - F, sin 8 (45 1 

Determin ti03 f a  

Di = F, sin 6 + Fx cos 6 (46) 

y two force components allows the calculation of the 
resultant aerodynamic force F; therefore, F, and Di will be deter- 
mined for this purpose. 

+ 

Determination of F, 

Far behind the airfoil the wake consists of two vortex cores con- 
taining the coiled vortex sheet. Within the vortex cores the motion 
is irrotational except for the surface of velocity discontinuity repre- 
senting the coiled sheet. This wake has been created from air .which 
was initially at rest (considering the flight of the wing through still 
air). 
wake has required the application of a definite vector impulse by 
the airfoil. 
stream flow of velocity V 
of change of the total impulse of the wake is constant and equal to a 
component of the aerodynamic force acting on the control volume, 

The creation of the motion associated with a unit length of the + 
-It 

From the viewpoint of a stationary airfoil in a free- + 
(steady flow), the instantaneous time rate 

= -  d? 
dt (47) 
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Since the  impulse i s  a vector quantity, it may be resolved i n t o  i t s  
components, whence 

I 
Fy' = 0 I 

(FYI = 0 because of the  plane of symmetry of the wake . 

as being formed from a superposit ion of concentric h e l i c a l  vortex fila- 

ments of s t rength - dr. Corresponding fi laments (one from each core)  

form a vortex p a i r  which may be considered p a r t  of the boundary of an 
i n f i n i t e  vortex r ing  of which t h e  bounding fi lament i s  h e l i c a l  i n  form. 
The t o t a l  impulse of a u n i t  length of t he  wake may therefore  be obtained 
by summing the  impulse contr ibut ions of al l  t he  vortex fi laments com- 
p r i s ing  the  cores.  

) 
The coi led vortex sheet may be considered, as previously mentioned, 

dr 
dr 

For any vortex r ing  formed by a closed vortex filament of  s t rength r 
t he  impulse ac t ing  on the  boundary generating the  motion from r e s t  i s  

where pg i s  the  impulsive pressure ac t ing  at a point  on a surface S 
having the  r ing  as i t s  boundary, and #, and $$) r e f e r  t o  the  po ten t i a l  
values a t  neighboring points  on e i t h e r  side of the  surface ( f i g .  1 6 ) .  
On passing through the  surface the  po ten t i a l  must su f f e r  a jump equal 
t o  I? whence - = r, and 

? =  J S p r i t d S  

.i -+ 
where i?dS = ds, gives the  r e su l t an t  l i n e a r  impulse t o  generate the  
r ing.  The value of I i s  independent of the  form of t h e  surface S 

+ 
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taken, by applying Stokes' theorem. Since I' is constant by Kelvin's 

circulation theorem 

the impulse of the ring is 

+ +  q.dr = 0 , the force required to increase (&) f 

The impulse of a helical vortex pair located at radius r within 
the core is now determined. 
apart as shown in figure 17. 
may be connected by a straight line parallel to the Y-axis so that a 
surface may be constructed, al l  of whose generators are normal to the 
X- and %axes and connect corresponding points on the two helices as 
shown in figure 18. If this area is denoted by S, the impulse per 
unit length of the pair is 

The axes of the helices are spaced nb/4 
Corresponding points on the two filaments 

The z-component of this impulse is 

dI,' = p LE dr J S  ;;'.?as 
dr (53) 

+ -++ 
+ 

where z is a unit vector parallel to the Z-axis. However n.z dS is 
merely the projection of the area n dS on the X-Y plane (fig. lg), so 
that equation (53) becomes, considering the symmetry of the projection 
of a helix with regard to its axis, 

dr 
dr dI,' = p b - dr (54) 

and this gives the z-impulse per unit length of a helical-filament pair. 

From the results of the section "Axial velocity field u(r)," the 
longitudinal velocity u is negligible so that integration of equa- 
tion (54) yields the simple result 

( 5 5 )  Yrb dr lib 
p - v COS 6 - dr = p - rov COS 6 

Fz' = F, = sob/5 dr 4 
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for the z-component of the aerodynamic force. This is exactly the same 
result as would be obtained by considering the cores as line vortices 
of strength ro. 

From figure 18 it is evident that there should exist also a force 
Fxl, since from the geometry of the wavy impulse surface it component 

can be seen that 

J S  ;;'.;as < 0 

+ where x is a unit vector in the positive x-d.irection; that is, there 
is a net component of impulse surface area in the negative x-direction. 
This force F,' 
longitudinal momentum due to u. Under the assumption that u is 
negligible, Fx' = 0. 

is clearly the force associated with the increase in 

A second method for determining F, through a consideration of 
the hydrodynamic mass of the wake body is given in appendix B. 
results, as may be expected, are again identical tc those for a vortex 
pair. 

The 

Determination of Di 

The component Di of the aerodynamic force is determined by an 
The basic relation for this integration of the wake kinetic energy. 

calculation is the p o w e r  equation, 

where denotes an integration over a plane taken perpendicular to 
the cores and far downstream of the wing, of the area external to the 
vortex cores, and Sc denotes integration over the core areas. If u 
is considered negligible, equation ( 5 6 )  becomes simply, 

m,O 
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Di = p COS 8Jm'O v2 + 2 w2 dS + p COS 6Jsc v2 + 2 w2 dS ( 5 7 )  

These integrals are designated (a) and (b) as shown. 

Integral (a) is simply evaluated by considering the two-dimensional 
velocity field due to the vortex pair. 

W = iK log, R1 - 

where K = 3. me stream function of 
that 

2ll 

The complex potential is (fig. 20)  
IT 
1 

5 
6 

( 5 8 )  1 iri loge R2 

the motion is Jr = K log - R1 so 
e R2' 

since the flow is everywhere irrotational. By Stokes' theorem and 
equation ( 5 9 )  

where the contour C denotes the core boundaries and the connecting 
line as shown in figure 20. The integration is carried out in the 
positive direction with the enclosed area to the left. Since T V  Q + w dz) = VT ds, where 
boundary, equation (60) becomes 

VT is the tangential speed at the core 



where C1 denotes counterclockwise integration around the right core 
only. On this boundary R1 = b so that 

In the expression log, R2 R1 = loge rlb b is cancelled before inte- 

gration.) For r2 we have 

From the geometrical relationships of figure 21, the following functions 
of 9 are obtained: 

Graphical integration of equation (63) then yields 

and integral (a) of equation (57) becomes 

Integral (b) of equation (57) is to be evaluated over both vortex 
cores. 
velocity components are 

If the geometrical relations of figwe 22 are used, the core 



C' , 

2 ' -  

The veloci ty  vT within the  cores, as given by equation (26), 
becomes i n f i n i t e  a t  r = 0. The k ine t ic  energy of t h e  core however 
approaches a f i n i t e  value. 
the core w h e r e  VT becomes large i s  considered, the k ine t ic  energy Of 

t h i s  region can be obtained by summing the  ro t a t iona l  and the  transla- 
t i o n a l  energies. Thus, 

If a very small region near the  center  of 

where 

and 

and the  k ine t ic  energy per u n i t  length o f  the  core i s  f i n i t e ,  even 
though the  ro t a t iona l  ve loc i ty  i s  i n f i n i t e  a t  r = 0.  

L 
1 
1 

Now a r b i t r a r i l y  choosing a s m a l l  value f o r  r, say r = 0.001b, 
i n t eg ra l  ( b )  can be evaluated by using equation (68) t o  obtain the  
induced drag corresponding t o  the  energy i n  the  region 0 5 r 5 0.001b 



Di = 9.1098 sin26 cos SpV2b2! 

Aerodynamic Forces 

Solving equation (46) for Fx and substitution into equation (45) 
gives the lift force, 

L = F, sec 6 - Di tan 6 

From equation (55), after substituting for V0, 

FZ = 3.8757 sin 6 cos 6pV2b'-) (71) 

From equations (69), (TO), and (Tl), the final expressions for the lift 
and drag forces are 

L = Pv%2( 3.8757 sin 6 - 9.1098 sin3&) 

2 2  2 Di = pV b (9.1098 sin 6 cos S )  

b2 - = A, the corresponding coefficients may be expressed as Since 
s, 

(72) 

cL = 2A( 3.8757 s i n  6 - 9.1098 sin36)  

Di = 2A(9.1098 sin 2 6 cos 6 )  

It follows from equations (72) that the forces are directly proportional 
to the aspect ratio A. 

L 
1 
1 

The results of equations (72), obtained by using 6 as a parameter, 

are plotted in figure 23 in the form - CL against; - cDi. 

lifting-line result - - is included for comparison. 

The linearized A A 

A 
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I .  

and by using the following integral for the induced drag corresponding 

to the energy in the region 0.001b 5 r 2 b 
3' 

p cos 6 - r02 [bh 1 2 "  [i- r sin 2 8 

2 b + r COS e )  + (r sin e ) 2  
4 

4fi2 0.001b 0 

-1 2 
1 

-I 

J [ b + r c o s  e ! -  '4 
'(" b + r cos e)2 + (r sin 14 
I -  

This integral may be evaluated numerically for each core yielding the 
total value (sum of both cores) 

The integrations were performed by digital computer using Simpson's 
rule. 
over both cores yields for the induced drag 

Evalwtion of equation (68) for the region 0 5 r 2 0.001b 

(0.0060 - 

This subcore value is an 

2 
0.0000045) + 

extremely small percentage of the total kinetic 
energy of the cores and an even smaller percentage of the total flow 
kinetic energy. Hence it is immaterial whether the velocity field of 
equation (26) or that due to a subcore of constant vorticity (as is 
the actual case) is used to determine the kinetic energy of the flow 
near the core center, since the value is in either case negligible. 
This ris true, of course, only if the radius of the constant vorticity 
subcore is s m a l l ,  and experiment shows this to be the case (ref. 4). 

Substitution of the final values for integrals (a) and (b) into 
"2 equation (57) and replacing ro with - Vb si.n 6 gives the induced 

drag as a function of 6 as follows: 
2 
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One of the most important results to be noted from the normalized 
drag polar of figure 23 is that a maximum lift coefficient exists and 
this maximum coefficient is proportional to the wing aspect ratio. 
equations (72), the maximum lift coefficient is 

From 

CL,max = 1.94A ( 7 3 )  

and this occurs for a wake angle 6 = 22.1'. Thus C L , ~ ~  is obtained 
when F0 = 1.86vb for an elliptical circulation loading. 

The relation for C L , ~  (eq. (73) )  requires some explanation 
since it predicts unrealistic values of lift coefficient for wings of 
large aspect ratio. For example, for A = l f j ,  C L , ~ ~  = 29.1. It is 
clear that for wings of large aspect ratio, CL,- is determined by 
some effect other than the wake induced velocity. 
such as considered herein, is set by the physical ability of 
the section to produce circulation. If a Joiikowski profile, as obtained 
by conformal transformation of a circle of r:%dius a is considered, the 
theory shows that for the section, 

For normal wings 
C L , ~  

CL = 8rr 5 sin 
where c is the chord of the profile and 9% is the absolute angle of 
attack of the zero lift line. This angle uu. determines the circula- 
tion around the section, since the Kutta condition requires that the 
point on the circle corresponding to the profile trailing edge be a 
stagnation point. The maximum value of a/c is 1/2, so that for this 
case 

cL = 4n sin ua 

and 

CL,mSx = 4rr 

- x  When ua = 2 the front and rear stagnation points for 
2' 

for ua - - 
2' 

both the circle and the profile have coincided. For the profile, both 
stagnation points then lie on the trailing edge, and any further pro- 
duction of circulation is impossible from a physical standpoint. 
all profiles are assumed to behave in a manner similar to the Joukowski 

If 



profile, the limit 
Now assuming that a maximum section lift coefficient of 12.6 can be 
attained by each section of the three-dimensional wing, the wing lift 
coefficient cannot exceed 12.6. Hence, regardless of aspect ratio, 
the absolute CL,- of the wing cannot exceed 12.6. This leads to 
the conclusion that only wings having 

limited by wake effects. 

CL,max = 4n = 12.6 may be set for all profiles. 

A 5 6.5 w i l l  have CL,max 

Here A = - b2 where 
sw 

s, = Jbl2 c dy 
-b/2 

These results are summarized in figure 24 which is a plot of maxi- 
mum circulation Lift coefficient against aspect ratio. Below an aspect 
of 6.5 CL,- is given by the relation 

Above this value of A, CL,max is equal to 12.6. This curve may be 
considered the boundary of all possible circulation lift coefficients. 
(See fig. 24.) 

A brief analysis of the physical meaning of CL/A is of interest. 

Fo, without regard to the physi- 
In practice any number of 

In the derivations only an elliptical distribution of circulation is 
considered to exist for each value of 
cal means for obtaining such a distribution. 
tsing configurations producing a given lift coefficient and having 
elliptical circulation can be had merely by a suitable combination of 
chord, camber, and twist distributions, f o r  the same span. Hence the 

aspect ratio A = b2 - can scarcely have any unique physical meaning, 
since it depends upon the particular S, chosen for its definition. 
The value of Sw to be used in computing the value of A for use with 
fi,a;ure 23 is therefore arbitrary, so long as the same value is used to 
define the lift coefficient for the wing. This follows from the fact 
that the normalized lift coefficient is independent of wing area: 

s, 
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CL - L sw L - - - - = -  
A qsw b2 qb2 
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Thus, figure 23 may be used as the drag polar f o r  wings which appreci- 
ably alter their geometry and area for various regions of the lift 
range, provided of course that the circulation distribution at each 
lift condition approximates the elliptical forni. The problem of 
designing a wing which will possess an ellipti(B1 or any other speci- 
fied distribution of circulation at a given CIA necessitates a knowl- 
edge of the downwash distribution at the wing and, as previously men- 
tioned, this information cannot be furnished by momentum considerations. 

1/2 
is shown in fig- The F‘randtl lifting-line result - CL = (II FF) 

A 
ure 23 for comparison with equations (72). No appreciable deviation of 

the linear and nonlinear relations occurs below - = 1.1. Thus use of CL 
- A 

CLd 
the linear-theory result C D ~  = - for calculation of the induced drag IIA 
appears valid up to the values of lift coefficient equal to the aspect 
ratio of the wing. 
shows a plot of the equation CL = 1.1A. For combinations of CL 
and A below this line, lifting-line theory is valid. Above this line 
the nonlinear relation of equations (72) is applica-ole. 

This result is also smarized in figure 24 which 

Unfortunately, experimental data at sirffilcientiy high values of 
for comparison with the nonlinear region oi’ t.ne theoretical CL/A 

results do not exist. However considerable data are available for 
boundary-layer-control wings of various aspect ratios and planforms 
opera t ing  at moderate values  of CL, and experimental  r e s u l t s  ( r e f s .  5 
to 13)  for several wings are compared with the theory in figure 25. 
As shown in the figure, the experimental points represent a range of 
aspect ratios, planforms, and boundary-layer-control systems. In all 
cases the maximum lift coefficient of the wing is limited by stall, 
and the points shown represent values just before the stall of the 
wing. 
rectangular planform and wing-body configurations. 
wing of aspect ratio 20 correlate especially well, as might be expected. 
Reasonable agreement occurs even for wings with appreciable amounts of 
sweepback. This agreement may be considered as experimental verifica- 
tion of the theoretical prediction that the lifting-line relations are 
valid even for high lift coefficients provided the aspect ratio is suf- 
ficiently large (cL 5 1.1~). 

The data correlate well with the normalized polar, even for the 
The data for the 

An additional point of interest in figure 23 is the relation - 

CL = CDi. At 3 A = 1.90, !k! A = !?& A ’  and if the total drag of the wing 



is assumed to equal the induced drag the thrust required for flight is > equal to the lift. Thus, an aircraft capable of operating at CL = l.gOA 
must have sufficient thrust to take off vertically. 
used as a rough demarcation line between STOL and VTOL capabilities of 
a given STOL aircraft: 

This result may be 

The drag polar of figure 23 as established by this investigation 
is similar to that arrived at by Helmbold (ref. 14) using a different 
procedure. The agreement is due, however, to the fact that the axial 
velocity field is assumed negligible in the present treatment. In the 
derivations of reference 14, no restrictions were placed on the induced 
axial velocity so that the agreement with the present results indicates 
that the assumptions of reference 14 reduce it to a two-dimensional 
treatment of the problem. 

7 

"he result given in equation (42) predicting downstream distance 
at which the vortex sheet is fully rolled up may be compared with the 
result of Kaden (ref. 2). Kaden's relation for an elliptical sheet, 

A d = 0.28b - 
CL 

may be put in the form 

d 
b 
- = 0.04 cot 6 

From equation (42), CL - rl r o  for small values of 6, since - - - - 
A 2Vb' 

d - = 0.12 cot 6 
b 

The present theory predicts a distance three times as large as does 
Kaden's result. However, Kaden's derivation is based upon the rollup 
of a semi-infinite vortex sheet, so that the question as to when the 
rollup is complete is indeterminate, making the coefficient 0.28 some- 
what arbitrary in nature. The result of the present theory is based 
on complete rollup of a finite semisheet. 
the two results is practically negligible, however, as may be seen by a 
consideration of figure 9. 
the vorticity is concentrated near the center of the core so that, for 
example, when the core has grown to only 64 percent of its final radius (F = 0.44 it already contains 92 percent of the vorticity. Using 

this radius, 

The apparent difference in 

Here it is seen that the greater part of 

) 
r = 0.2% (where equations ( 2 0 )  and (22) diverge 
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appreciably), as the basis for essentially complete rollup, the result 
from equation (40) is 

d 
b 
- = 0.05 cot 6 

which may be taken as the "essentiallyt' complete rollup distance. 
choice of radius is, however, purely arbitrary and the complete rollup 
distance is given by 

This 

= 0.12 cot 6 
b 

That the complete rollup requires considerably more distance than 
the essentially complete rollup is shown in the experimental data of 
Muttray (fig. 18 of ref. 15) where the vortex cores move inward lat- 
erally toward the equilibrium line I[ y = - b only very slowly. 8 

A knowledge of the rollup distance is prinarily of interest in 
estimating the downwash field for longitudinal stability analyses. In 
lieu of accurate experimental data, a first-order approximation of the 
downwash field behind a highly loaded wing might be estimated from the 
foregoing results. For this purpose the relation 2 = 0.05 cot 6 is 

plotted in figure 26 as a function of CL/A by using equations (68). 
This plot shows for example, that the vortex sheet of a wing with 

aspect ratio 6 pulling a lift coefficient of 3 
essentially rolled up at a distance d = 0.76b 
If the tail location is such that it lies beyond d f0r.a given CL/A, 
the velocity field may be estimated by use of equations (58) and (67). 
If the tail is located forward of d 
roughly estimated by use of Kaden's results (ref. 2) for the lateral 
location of the cores, combined with equation (40) which determines 
the size of the cores. It is emphasized that this method is quite 
approximate, but it furnishes a means for first-order analysis of sta- 
bility effects at high lift coefficients. 

b 

(2 = 0.5 1 w i l l  be 
) 

along the wake axis. 

the velocity field might be 

CONCLUDING REMARKS 

The objective of this paper has been the development of the com- 
plete drag polar for wings having an elliptica.1 distribution of circu- 
lation and the objective has been sought through a detailed considera- 
tion of the wake produced. In the course of the derivations the 



assumption was made that the axial velocity within the cores was negli- 
gible in its effect on the wing forces and an attempt was made to 
justify this from both theoretical and experimental considerations. In 
view of the other simplifying assumptions made in the derivations a 
more detailed analysis of the axial velocity field does not appear 
justified. 

The resulting theory predicts that the wake induced velocity limit,s 
the maximum lift coefficient to a value equal to 1.94 times the wing 
aspect ratio A for wings with A 5 6.5 and that airfoil section char- 
acteristics limit the lift coefficient to 12.6 for wings with A > 6.5. 
The theory a l s o  indicates that up to lift-coefficient values of 1.1A 
the results of the linear lifting-line theory are valid. Although 

‘ I  
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6 
experimental data for values of lift coefficient CL sufficiently high 

to compare with the theory near 

data for many current 7,:ing planforms using boundary-layer control cor- 
relate well with the theoretical results in the lower range of 
Experimental data indicate that with the relatively small amounts of 
boundary-layer control currently being used on operational aircraft, 
the stall lift coefficient is still sufficiently low that linear theory 
is applicable. 

C 

are not available, existing (2)max 

CL/A.  

Finally, experimental evidence indicates tnat the theory predicts 
C L , ~ ~  s,-i th reasonable accuracy the lift;-drag relationship near stall 

:f wings with widely varying planforms, flap deflections, degrees of 
sweep, and methods of boundary-layer control. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., November 14, 1960. 
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APPENDIX A 

THE AXIAL VELOCITY F I E L D  O F  A VORTEX SOLENOID 

L '  
1 
1 
5 
6 

, .  

. .  

The vortex l i n e s  comprising the  vortex sheet which emanates from 
the t r a i l i n g  edge of a l i f t i n g  a i r f o i l  c o i l  ab0c.t the t i p  filament t o  
form concentric he l i ces  as they pass downstream. 
h e l i c a l  form they a c t  as a solenoid, inducing ar, axia.1 ve loc i ty  u 
within the  vortex core. The following i s  a brief der ivat ion of the 
ve loc i ty  p r o f i l e  of such a vortex solenoid. 

By v i r t u e  of t h e i r  

Magnitude of u Due t o  a Single Vortex Ring of Radius r 

Far downstream the  solenoid can be Considered az; having i n f i n i t e  
length and being c i r c u l a r  i n  form. The number of tu rns  per  u n i t  length 
of each h e l i x  i s  assumed s u f f i c i e n t  that each tu rn  cen be considered t o  
l i e  i n  a plane normal t o  the  ax is .  From inducti-on theory, t he  a x i a l  
ve loc i ty  induced a t  i t s  center  by a r ing  of radi.us r i s  

dF r d O = -  AUcenter - S, 2 r  

2rc dr - 

where dl' i s  the  s t rength  of the  vortex filament and 9 i s  the  angle 
as shown i n  figure 27. For any poin t  P on t h e  a x i s  of t he  hel ix ,  
located a distance x from the ring, the  a x i a l  ve loc i ty  induced by the 
r ing  i s  

Magnitude of u Due t o  a Single I n f i n i t e  Helix of Radius r 

If n i s  the  number of t u rns  o r  vortex r ings pe r  u n i t  length of 
the  h e l i x  of s t rength  d r  and radius r, then the  c i r cu la t ion  p e r  u n i t  
length i s  n dr. The c i r cu la t ion  about a r ing  of width dx i s  n d r  dx 
( f ig .  ' 27). From equation (A2)  t h i s  r i n g  w i l l  induce a t  a poin t  P on 
the  a x i s  the  ve loc i ty  

nr2dI" dx 
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where R i s  defined i n  sketch a t  bottom of f igure  27. For the  ve loc i ty  
a t  P due t o  a length 2 of the he l ix  (using bottom sketch of f i g .  27), 

since 

When the he l ix  i s  i n f i n i t e ,  = O 2  

Aup = 

Velocity P ro f i l e  u(  r) 

A he l ix  of radius r having 
d r  s t rength d r  = - d r  contr ibutes  
dr 

du = 

s i n  0 = - dr s i n  0 d0 
2 

= 0 and 

n d r  

f o r  Ent i re  Vortex Core 

n ( r )  tu rns  per u n i t  length and 

an element of a x i a l  ve loc i ty  of 

a t  a l l  points  on the  a x i s  of t he  hel ix .  
long t h i s  ve loc i ty  i s  constant over t he  in t e r io r .  By summing a l l  the  
he l ices  comprising the  core, the a x i a l  ve loc i ty  p r o f i l e  i s  

Since the  he l ix  i s  i n f i n i t e l y  

where T) i s  a dummy variable  of integrat ion,  ro i s  the outer  radius  
of the  vortex core, and k i s  an integer .  



. 
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APPENDIX B 

ALTERNATE METHOD FOR CALCULATING Fz 

The s tab le  wake far downstream from the wing consis ts  of two vortex 

cores of diameter 2 -b 
3 

with centers gb 
4 

apar t  moving normal t o  them- 

selves with a veloci ty  V s i n  6 ( f i g .  10). The r e l a t i v e  closeness of 
the cores r e s u l t s  i n  the formation of two d i s t i n c t  systems of streamlines 
r e l a t i v e  t o  the cores, as w i l l  be shown. One system i s  closed - t h a t  
is, the streamlines form closed curves about the cores - whereas, the 
other  cons is t s  of open streamlines - t h a t  is, beginning and ending a t  
i n f i n i t y  ( f i g .  28). The r e s u l t  i s  t h a t  the vortex p a i r  entraps the 
f l u i d  within the closed system and c a r r i e s  it along i n  i t s  t rans la t ion  
with a ve loc i ty  V s i n  6. 
mass of a i r  the t r a n s l a t i o n a l  ve loc i ty  V s i n  6 i s  c l e a r l y  the  aero- 
dynamic force Fz. This force consis ts  of two p a r t s :  t h a t  associated 
with the  t r a n s l a t i o n a l  momentum of the closed body of f l u i d  and t h a t  
necessary t o  accelerate  the body of f l u i d  t o  the ve loc i ty  
Determination of the time r a t e  of change of the z-impulse associated 
with the formation of t h i s  wake w i l l ,  as before, give the  force F,. 

The force exerted by the a i r f o i l  t o  give t h i s  

V s i n  6. 

The calculat ion i s  begun by f i r s t  determining t h e  boundary of the 
closed body, t h a t  is, the  enclosing streamline, from which the sec- 
t i o n a l  area may be established. K~ 
the  complex poten t ia l  of the steady flow is, i n  terms of the  complex 
variable z '  = y + iz ,  

Since each core has a s t rength 

whence 

- Vy s i n  6 

Here y and z a r e  Cartesian coordinates. The bounding streamline i s  

given by J, = 0, and since 

becomes, a f t e r  some transformations, 

2 ro = Z- Vb s i n  6, the equation of the boundary 2 
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y = - b  [ oge [( Y + -  ;f + z2] - loge[(. - $ + zj} (B3)  8 

This impl ic i t  equation can be solved graphically t o  obtain the boundary 
streamline. The section of the wake i s  an  oval with minor a x i s  of 
0.926b and major ax i s  of 1.639b, with a n  area of 1.760b2. 
from equation (B3) ,  the  cross-sect ional  area i s  independent of both 
and core radius. 

As i s  evident 
ro 

The wake may thus be considered as a f l u i d  cylinder of oval sect ion 1 

5 
6 

moving normal t o  i t s  a x i s  with ve loc i ty  of V s i n  6. This cylinder 1 
ca r r i e s  a momentum per u n i t  length of 

pA'V s i n  6 (@+) 

where 
the force 
r a t e  of change of the wake z-momentum due t o  the creat ion of the cylinder, 

A' = 1.760b2, the sec t iona l  area of the cylinder.  The p a r t  of 
due t o  the  cylinder momentum i s  obtained from the time F, 

(FZ)l = pV2sin 6 cos 6A' = 1.760p$b2sin 6 cos 6 035) 

The second pa r t  of the force F, i s  t h a t  associated with the flow 
momentum externa l  t o  the cylinder.  
f l u i d  cyl inder  i s  iden t i ca l  t o  that associated with the motion of a 
so l id  cylinder of the  same shape. 
the appl icat ion of a de f in i t e  impulse i s  required t o  acce lera te  an 
immersed body from r e s t  t o  a steady ve loc i ty  i n  a f l u i d  a l so  a t  r e s t  
i n i t i a l l y ,  and t h i s  impulse i s  grea te r  than t h a t  needed f o r  equal accel- 
e ra t ion  i n  a vacuum. Thus the  presence of the f l u i d  increases the 
e f f ec t ive  mass of the body by an amount 
which i s  equal t o  the  d r i f t  mass of the  pa r t i cu la r  body. 

The f l u i d  motion ex terna l  t o  the  

As predicted by hydrodynamic theory, 

U 

M ' ,  the  hydrodynamic mass, 

The power expended i n  generating a u n i t  length of the  ex te r io r  
flow about a so l id  cyl inder  of any sec t iona l  shape moving normal t o  i t s  
ax i s  i s  

where F' 
body t o  overcome i t s  accelerat ion drag. 
a n  impulse gives 

i s  the  p a r t  of the t o t a l  force which must be applied t o  the  
Converting equation (6) t o  



L. 
1 
1 
3 
6 

F'd t  = M'U = I' s 
where I' i s  the impulse per u n i t  length of cylinder t o  generate the 
ex terna l  motion from res t .  F, 
now reduces t o  a calculat ion of M'  f o r  the oval  cylinder of the wake. 

The determination of the second p a r t  of 

The oval  i s  assumed t o  be a t rue  e l l i p se ,  since it var ies  only 
s l i g h t l y  from an e l l i p s e  with s i m i l a r  minor and major axes. 
energy i n  the  flow ex te r io r  t o  an e l l i p t i c a l  cylinder with major ax i s  
and minor ax i s  2b, moving with the steady ve loc i ty  U normal t o  i t s  
semiaxis a is, per u n i t  length, 

The k ine t i c  
2a 

E = -  ' px$a2 
2 

Using equation (6) yie lds  

(Bg) 2 M' = pna 

f o r  the cylinder d r i f t  mass. In the present csse EL = 0.819b and 
U = V s i n  6, and I' i s  obtained from equation (B'j') a s  

I '  = (0.819)2pxb2V s i n  6 

Then 

(F,)* = - d1 = 2.116p?b2sin 6 cos 6 
d t  

Finally,  

F, = (Fz)l + (Fz)2 = j.876p$b2sin 6 cos 6 (B10) 

These r e s u l t s  indicate  t h a t  t he  f l u i d  within the  closed body ca r r i e s  
45.4 and the ex terna l  flow 54.6 percent of the z-momentum imparted by 
the a i r f o i l  t o  the  f lu id .  

It i s  of i n t e r e s t  t o  compare these r e s u l t s  with those of the usual  

' 0  t o  a mass w = - 
b 

momentum treatment of a i r f o i l  l i f t ,  wherein it i s  represented t h a t  the  

a i r f o i l  obtains  l i f t  by imparting a downward ve loc i ty  

of a i r  passing through a c i r c l e  of diameter equal t o  the wing span 

- 
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For small values of 6 

so t h a t  

This is 

( c o s  6 -+ l), t h i s  expression reduces t o  

3 
8 

L = -  ' pV2b2sin 6 

L = 3.876pV2b2sin 6 

c- 
1 
1 
5 

i e n t i c a l  with ,,,e previous r e s u l t  for  F,. However, the present 6 
treatment gives the t rue physical wake, while the c i rcu lar  form has no 
physical r ea l i t y .  I 
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Figure 1. - Trai l ing vortex system behind. a f ini te-span wing. 

X I V 
f--- 

Figure 2. - General representation of the vo:rtex-wake incl inat ion.  

I Zero L i f t  

Figure 3.- Forces and ve loc i t i e s  ac t ing  a t  a sect ion of a f ini te-span 
wing having high circulat ion.  
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Y 

x 
Figure 4.- General representation of the deformation of the t r a i l i n g  vor- 

tex  sheet behind a finite-span wing. 

Figure 5.- System of coordinate axes taken p a r a l l e l  t o  the ult imate wake. 
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X 

Figure 6. - Components of the free-stream velocity.  
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2 

Figure 7.- Axis system f o r  the  i n i t i a l l y  f la t  wake s t r i p .  

Figure 8.- Coiling vortex sheet. (See re f .  2.) 
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Figure 9.- Variation of c i rcu la t ion  with radius and the r e l a t i o n  of the  
vortex sheet t o  the core s ize .  
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Figure 10.- Cross-sectional view of the ult imate wake taken normal t o  the 
core axes. 

,/" 
i 

Figure 11.- Elemental length of a vortex he l ix  of radius r formed by 
the deformation of a vortex sheet wake. 
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Figure 12.- Variation of the  function 
core. 

f l ( r )  with radius  i n  the  vortex 
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Figure 13.- General representation of the thickness var ia t ion  of the vor- 
t ex  layer  behind a finite-span wing. (See ref .  4.) 

Figure 14.- Addition of the vortex sheet t o  the vortex core. 

\ \ 1 

Figure 15.- Force systems for  a l i f t i n g  a i r f o i l .  
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\o 

rl In Figure 20.- Path of in tegra t ion  f o r  determining k ine t i c  energy ex terna l  
t o  a vortex pair. 2 

Figure 21. - Geometrical r e l a t i o n s  f o r  es tab l i sh ing  equations (64). 

Figure 22. - Geometrical r e l a t i o n s  f o r  es tab l i sh ing  equations (67). 
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Figure 24.- Variation of l i f t  coef f ic ien t  with aspect r a t i o  and regions 
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i n  which l i n e a r  and nonlinear theory apply for  calculat ion of 
induced drag. 
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Figure 26.- Relation of rollup distance with normalized lift coefficient. 
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dx 
4 P -  

Figure 27.- Geometrical relations for axial-induced velocity field of a 
vortex helix. 
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Figure 28.- The streamline $ = 0 which forms the boundary between the 
open and closed streamline systems. 

NASA - Langley Field, Va. LF 1156 


